Analysis and implementation of low-rank tensor algorithms
Swiss Ai Research Overview Platform
L'objet de ce project est l'analyse numérique et la mise en oeuvre efficace d'algorithmes qui utilisent des techniques de tenseurs de faible rang, appliquées à trois types de problèmes :
Numerical methods using low-rank tensor techniques have seen great success in, for example, theoretical physics for the simulation of spin systems, in scientific computing for high-dimensional PDEs, and in signal processing for independent component analysis. The aim of this proposal is to (A) propose numerical integrators for integration of time-reversible tensor ODEs with rank truncation, (B) parallelize low-rank tensor algorithms for optimization and time integration, and (C) apply tensor techniques for regression and decision in machine learning.
Last updated:04.06.2022